

Inviting New Products for Infant Respiratory Syncytial Virus Prevention to Canadian Practice

Samara Bugden¹, Shweta Mital², Hai Van Nguyen¹

¹School of Pharmacy, Memorial University of Newfoundland, St. John's ²College of Pharmacy, University of Manitoba, Winnipeg

Introduction

- Respiratory syncytial virus (RSV) is the leading cause of acute lower respiratory infection (ALRI) in young children¹.
- Children in the Canadian Arctic are more vulnerable to severe RSV infection:
 - Northern Canada: 176/1000 infants hospitalized²
 - Southern Canada: 11/1000 infants hospitalized³
- Transporting northern infants for hospitalization presents a large economic burden.

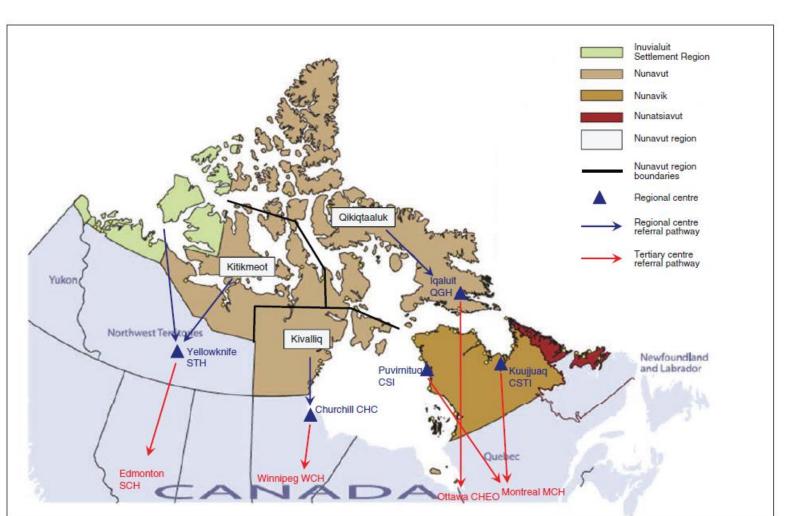
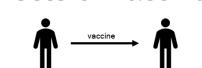
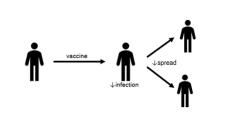



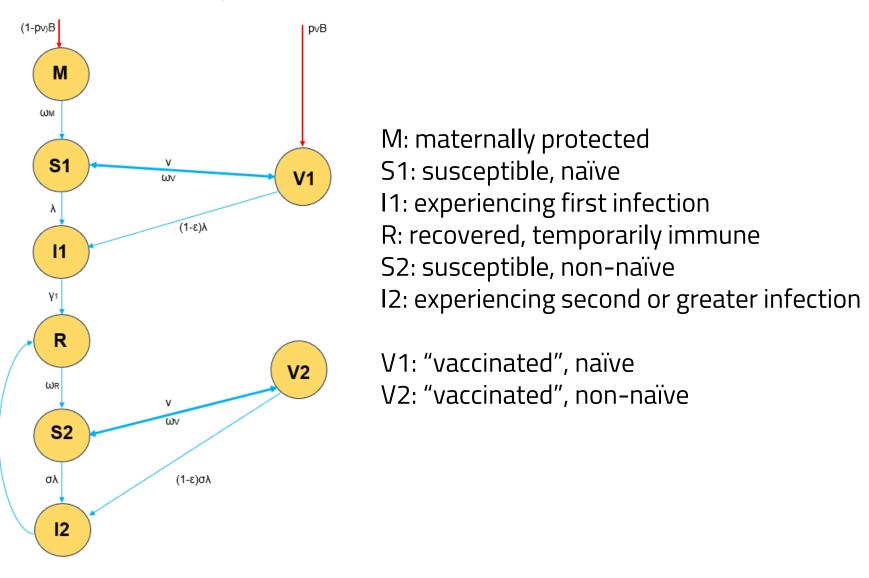
Fig 1: Typical referral pathways for Inuit regions of Canada²


- Previously, the only available product for preventing RSV infections in infants was palivizumab, a monoclonal antibody. This product is expensive, requires monthly administration during the RSV season, and is only available for infants with the highest risk of RSV complications.
- New products for RSV infection prevention in infants:
 - **Nirsevimab:** a long-acting monoclonal antibody approved in Canada in April 2023. One dose lasts an entire RSV season.
 - **AbrysvoTM:** a vaccine that can be given to pregnant women in their third trimester to protect their infants after birth. Health Canada accepted AbrysvoTM for review in April 2023. It was approved in the U.S. in August 2023.
 - (Note: the ArexvyTM vaccine was approved in Canada this year; this vaccine is only indicated for older adults.)
- The questions of cost-effectiveness:
 - Which product is more cost-effective?
 - Is it cost-effective to administer these products universally?
 - If not, who should receive these products?
 - Who is at highest risk of severe RSV infection?
 - Who uses the most resources once infected?
- Properly evaluating an infectious disease requires considering the complexities of disease spread. For example:
 - Vaccinating mothers with AbrysvoTM theoretically doubles the number of additional people with immunity compared to administering nirsevimab to babies only. How might this impact the overall spread of RSV?
 - Older adults also experience higher risk of severe RSV infection.
 Can reducing infection in younger populations indirectly affect infection rates and resource use in older adults?
- We will address these questions using a dynamic transmission model of RSV within a cost-effectiveness framework.
- Nourbakhsh et al (2021)⁴ evaluated these new strategies for Nunavik,
- No published studies have evaluated the cost-effectiveness of these new products in the wider Canadian context.

Methodology - Overview

- Modelling infectious diseases can be done using static or dynamic methods⁵.
 - Static models assume a constant infection risk (λ). They can only assess the direct effects of vaccination.

 Dynamic models allow the infection risk (λ) to vary (more infected individuals = higher infection risk). They can assess the indirect effects of vaccination.

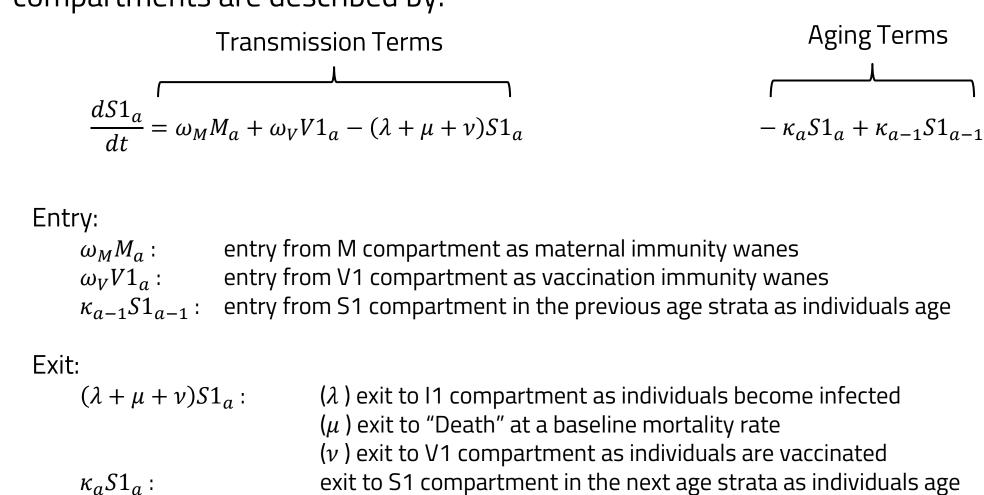

- In a basic dynamic transmission model:
 - The population is divided into disease "compartments".
 - S: Susceptible
 - I: Infected
 - I: IIII ecteu
 - R: Recovered
 - The number of people in each compartment varies over time as people become infected and recover. Differential equations describe these rates of change.

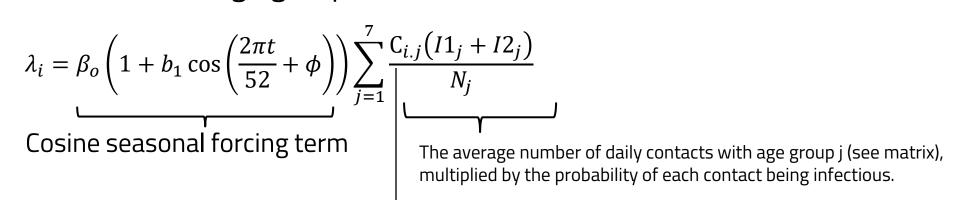
 $S \xrightarrow{\lambda} I \xrightarrow{\Upsilon} R$

A dynamic transmission model for RSV⁶:

Fig 2: Model design without age strata

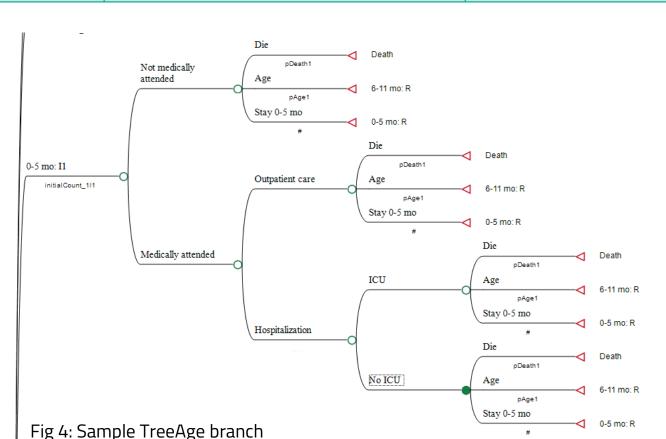
- Immunity is incomplete; reinfection is possible.
- Repeat infections have reduced duration and severity; the model should differentiate between first and subsequent infections.
- Infants are born with protection from natural maternal antibodies.
- The model must capture our intervention strategies; a "vaccinated" compartment should be introduced.


• As well, RSV severity is age-dependent. The model must be agestratified with individuals able to transition through age strata.


• The entire population is divided into 7 age strata. At each age level, individuals move through the disease compartments. Every compartment includes an "aging rate" at which individuals age into the equivalent compartment, one age group older.

Methodology - Mathematics

The rate of change for each disease compartment is described by differential equations. For example, the S1 (susceptible, naïve) compartments are described by:



The infection risk in age group i is:

Table 2: Contact Matrix ⁷							
0 to 5 mo	6 to 11 mo	12 to 23 mo	2 to 4 y	5 to 17 y	18 to 64 y	65+ y	
0.27	0.27	0.27	0.27	0.04	0.04	0.01	
0.27	0.27	0.27	0.27	0.04	0.04	0.01	
0.56	0.56	0.56	0.56	0.09	0.08	0.02	
1.78	1.78	1.78	1.78	0.30	0.25	0.07	
1.41	1.41	1.41	1.41	7.56	1.53	0.43	
5.09	5.09	5.09	5.09	5.93	11.45	2.27	
0.42	0.42	0.42	0.42	0.56	0.70	1.36	
	0.27 0.27 0.56 1.78 1.41 5.09	0 to 5 mo 6 to 11 mo 0.27 0.27 0.27 0.27 0.56 0.56 1.78 1.78 1.41 1.41 5.09 5.09	0 to 5 mo 6 to 11 mo 12 to 23 mo 0.27 0.27 0.27 0.27 0.27 0.27 0.56 0.56 0.56 1.78 1.78 1.78 1.41 1.41 1.41 5.09 5.09 5.09	0 to 5 mo 6 to 11 mo 12 to 23 mo 2 to 4 y 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.56 0.56 0.56 0.56 1.78 1.78 1.78 1.78 1.41 1.41 1.41 1.41 5.09 5.09 5.09 5.09	0 to 5 mo 6 to 11 mo 12 to 23 mo 2 to 4 y 5 to 17 y 0.27 0.27 0.27 0.27 0.04 0.27 0.27 0.27 0.04 0.56 0.56 0.56 0.56 0.09 1.78 1.78 1.78 0.30 1.41 1.41 1.41 1.41 7.56 5.09 5.09 5.09 5.09 5.93	0 to 5 mo 6 to 11 mo 12 to 23 mo 2 to 4 y 5 to 17 y 18 to 64 y 0.27 0.27 0.27 0.04 0.04 0.27 0.27 0.27 0.04 0.04 0.56 0.56 0.56 0.56 0.09 0.08 1.78 1.78 1.78 0.30 0.25 1.41 1.41 1.41 7.56 1.53 5.09 5.09 5.09 5.93 11.45	

	Table 1: Parameters			
$\delta_{i,j}$	Kronecker delta	δ _{a,1} equals 1 for the first age group, and zero thereafter		
p_V	Proportion of infants born vaccinated	Intervention dependent		
В	Birth rate	Geography dependent		
$1/\omega_M$	Average duration of maternal immunity	112 days ⁸		
$1/\omega_R$	Average duration of post-infection immunity	202.8 days ⁹		
μ	Baseline mortality rate	Age dependent		
ν	Vaccination rate	Intervention dependent		
λ	Infection risk	See equation		
κ_a	Aging rate of age group a	1/width of age strata		
$1/\gamma_1$	Average duration of first infection	6.16 days ¹⁰		
$1/\gamma_2$	Average duration of subsequent infections	5.36 days ¹⁰		
σ	Reduced susceptibility to infection after a primary infection	0.757 ¹¹		
ε	Intervention efficacy	Intervention dependent		
$C_{i.j}$	Contact matrix of average number of daily contacts of an individual in age group i with age group j.	See matrix		
Seasonal forcing terms:				
eta_o	Average transmission rate	0.121/day ¹²		
B ₁	Amplitude of seasonal fluctuation	0.24612		
φ	Seasonal phase shift	-20 days ¹²		

The model is run using TreeAge Pro 2023 R 1.2. The disease pathways for an "Infected" compartment are shown. Costs and utilities are incurred within each "Infected" compartment.

Expected Outputs and Significance

- The model will compare the following strategies:
- Nirsevimab administered to infants under 6 months
- Nirsevimab administered to infants under 12 months
- Abrysvo vaccine administered to pregnant women
- No intervention
- Prevention strategies will be evaluated separately for each geographical region:
 - Nunavut
 - Northwest Territories
 - Nunavik, Quebec
 - Southern Canadian provinces + the Yukon
- Model output for each strategy:
 - Cost (\$ CAD)
 - Quality-Adjusted Life Years (QALYs) gained
 - Incremental Cost-Effectiveness Ratio (ICER) compared to the next strategy

$$ICER = \frac{incremental\ cost\ (\$)}{incremental\ effectiveness\ (QALY)}$$

- # infections averted
- # hospitalizations averted
- Cost \$/hospitalization averted
- For products without a listed price (AbrysvoTM), the above results can be calculated for a range of likely prices. The model can then be used to calculate a maximum purchasing price per dose for the product at which it remains cost-effective compared to alternative strategies.
- The results of this study should help inform public policy as the landscape of RSV prevention in Canada shifts and decisions must be made regarding coverage for these new products.
- Other products for RSV infection prevention are in various stages of development, including at least 3 other monoclonal antibodies and 10 pediatric vaccines¹³. In addition, the ArexvyTM vaccine was licensed in Canada this year for older adults. While this model is currently designed to evaluate nirsevimab and AbrysvoTM for RSV prevention in infants, it can be adapted with relative ease to evaluate other products and/or populations in the field of RSV infection prevention in the future.

References

- 1. Li Y, Blau DM, Caballero MT, et al. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in children younger than 5 years in 2019: a systematic analysis. Lancet. 2022;399:2047-64.
- 2. Banerji A, Panzov V, Young M et al. Hospital admissions for lower respiratory tract infections among infants in the Canadian Arctic: a cohort
- study. CMAJ Open. 2016;17:4(4):E615-E622.

 3. Buchan SA, Chung H, To T, et al. Estimating the incidence of first RSV hospitalization in children born in Ontario, Canada. JPIDS.
- 4. Nourbakhsh S, Shoukat A, Zhang K, et al. Effectiveness and cost-effectiveness of RSV infant and maternal immunization programs: A case study of Nunavik, Canada. EclinicalMedicine. 2021;41:101141.
- Levin A, Burgess C. Static and dynamic modelling. In: Handbook of Applied Health Economics in Vaccines. Oxford University Press 2023.
 Weber A, Weber M, Milligan P. Modeling epidemics caused by respiratory syncytial virus (RSV). Mathematical Biosciences. 2001;172:95–113.
 Prem K, Cook AR, Jit M. Projecting social contact matrices in 152 countries using contact surveys and demographic data. PloS Comput Biol.
- Ochola R, Sande C, Fegan G, et al. The level and duration of RSV-specific maternal IgG in infants in Kilifi Kenya. PloS ONE. 2009;4(12):e8088.
 Hall CB, Walsh EE, Long CE, Schnabel KC. Immunity to and frequency of reinfection with respiratory syncytial virus. The Journal of Infectious Diseases. 1991;163:693-698.

10. Hodgson D, Pebody R, Panovska-Griffiths J, et al. Evaluating the next generation of RSV intervention strategies: a mathematical modelling

- study and cost-effectiveness analysis. BMC Medicine. 2020;18:348.

 11. Henderson FW, Collier AM, Clyde WA Jr, Denny FW. Respiratory-syncytial-virus infections, reinfections and immunity: A prospective, longitudinal study in young children. N Engl J Med. 1979;300(10):530-4.
- 12. Hawkes MT, Lee BE, Kanji JN, et al. Seasonality of respiratory viruses at northern latitudes. JAMA Network Open. 2021;4(9):e2124650.

 13. Esposito S, Abu Raya B, Baraldi E, et al. RSV prevention in all infants: which is the most preferable strategy? Frontiers in Immunology. 2022:13:880368.